
OPC Common Definitions

OPC Common Definitions and
Interfaces

Version 1.0

October 27, 1998

OPC Common Definitions

Specification Type Industry Standard Specification

Title: OPC Common Definitions Date: October 27,

1998

Version: 1.0 Soft MS-Word
 Source: OpcComn.doc

Author: Opc Task Force Status: Release

Synopsis:
This is the specification of rules, design criteria and interfaces that are
common to developers of OPC clients and OPC servers. The specification is
a result of an analysis and design process to develop a standard interface to
facilitate the development of servers and clients by multiple vendors that shall
inter-operate seamlessly together.

Trademarks:
Most computer and software brand names have trademarks or registered
trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:
This specification requires Windows 95, Windows NT 4.0 or later

 ii

OPC Common Definitions

NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of standard
OLE/COM interface protocols intended to foster greater interoperability between automation/control
applications, field systems/devices, and business/office applications in the process control industry.

The current OPC specifications, prototype software examples and related documentation (collectively, the
“OPC Materials”), form a set of standard OLE/COM interface protocols based upon the functional
requirements of Microsoft’s OLE/COM technology. Such technology defines standard objects, methods,
and properties for servers of real-time information like distributed process systems, programmable logic
controllers, smart field devices and analyzers in order to communicate the information that such servers
contain to standard OLE/COM compliant technologies enabled devices (e.g., servers, applications, etc.).

The OPC Foundation will grant to you (the “User”), whether an individual or legal entity, a license to use,
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement (“Agreement”). If User does not agree to the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
all formats) of such materials in User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be
bound by the terms of this Agreement.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices include on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights)
in the OPC Materials, subject to the limited license granted to User under this Agreement.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand Microsoft’s OLE/COM technology. THE OPC MATERIALS ARE
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The
OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS.

 iii

OPC Common Definitions

GENERAL PROVISIONS:

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, P.O. Box
140524, Austin, Texas 78714-0524.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

 iv

OPC Common Definitions

Table of Contents

1. INTRODUCTION ...1

1.1 READERS GUIDE...1

2. OPC DESIGN FUNDAMENTALS..2

2.1 INTERFACE DEFINITIONS ..2
2.1.1 Required Interface Definition..2
2.1.2 Optional Interface Definition...2
2.1.3 Which interface should the client application use. ..2

2.2 UNICODE, NT AND WIN95 ...2
2.3 THREADS AND MULTITASKING...3

3. OPC COMMON INTERFACE ISSUES...4

3.1 COMMON INTERFACE ISSUES..4
3.1.1 Custom vs. Automation Interface ..4
3.1.2 Required vs Optional Interface Definition ..4
3.1.3 Ownership of memory ...4
3.1.4 Null Strings and Null Pointers...4
3.1.5 Returned Arrays...5
3.1.6 Errors and return codes..5

4. SHUTDOWN OF OPCSERVERS...6

4.1 ICONNECTIONPOINTCONTAINER (ON OPCSERVER)...6
4.1.1 IConnectionPointContainer::EnumConnectionPoints ...6
4.1.2 IConnectionPointContainer:: FindConnectionPoint ..7

4.2 IOPCSHUTDOWN ...7
4.2.1 IOPCShutdown::ShutdownRequest...8

5. IOPCCOMMON ...9

5.1.1 IOPCCommon::SetLocaleID...9
5.1.2 IOPCCommon::GetLocaleID ..10
5.1.3 IOPCCommon::QueryAvailableLocaleIDs ...10
5.1.4 IOPCCommon::GetErrorString ...11
5.1.5 IOPCCommon::SetClientName...12

6. INSTALLATION AND REGISTRATION ISSUES ..13

6.1 COMPONENT CATEGORIES..13
6.1.1 Component Categories Registration ..13

6.2 REGISTRY ENTRIES FOR THE PROXY/STUB DLL...14
6.3 CREATING THE REGISTRY ENTRIES ..14
6.4 VERSION CONVENTION...16
6.5 INSTALLING OPC BINARIES ...16

7. OPC SERVER BROWSER..18

7.1 OVERVIEW ...18
7.2 INFORMATION FOR USERS ..18
7.3 INFORMATION FOR SERVER PROGRAMMERS...18
7.4 INFORMATION FOR CLIENT PROGRAMMERS ...18
7.5 IOPCSERVERLIST REFERENCE...19

7.5.1 IOPCServerList::EnumClassesofCategory..19
7.5.2 IOPCServerList::GetClassDetails..20
7.5.3 IOPCServerList::CLSIDFromProgID ...21

 v

OPC Common Definitions

8. APPENDIX A – OPC COMMON IDL SPECIFICATION...22

9. APPENDIX B – SAMPLE STRING FILTER FUNCTION..25

 vi

OPC Common Definitions

1. Introduction

1.1 Readers Guide
This document contains common rules and design criteria and the specification of interfaces which are
common for several topics.

Specific interface specifications to develop OPC clients and/or OPC Servers (e.g., for DataAccess,
Alarm&Event Handling or Historical DataAccess) are available as separate documents.

Chapter 1 is this Readers Guide.

Chapter 2 describes the fundamentals of the design and characteristics of OPC components.

Chapter 3 describes issues that are common to all OPC interfaces.

Chapter 4 specifies the shutdown capability of OPC Servers.

Chapter 5 specifies IOPCCommon, an interface that is also “common” to all types of OPC Servers.

Chapter 6 gives general information about OPC Server registration.

Chapter 7 specifies the interface for OPC Server Browsing.

Appendix A contains the IDL of the common interfaces.

Finally, Appendix B specifies a sample string filter function. It defines the minimum filtering required
on various methods of the OPC Server Interfaces.

 1

OPC Common Definitions

2. OPC Design Fundamentals
OPC is based on Microsoft’s OLE/COM technology.

2.1 Interface Definitions
OPC specifications always contain two sets of interfaces; Custom Interfaces and Automation
interfaces. This is shown in Figure 2-1.

C++ Application

VB Application

OPC Custom I/F

OPC Automation I/F

OPC Server
(In-Proc, Local, Remote,

Handler)
Vendor Specific Logic

Figure 2-1 - The OPC Interfaces

An OPC client application communicates to an OPC server through the specified custom and
automation interfaces. OPC servers must implement the custom interface, and optionally may
implement the automation interface. In some cases the OPC Foundation provides a standard
automation interface wrapper. This “wrapperDLL” can be used for any vendor-specific custom-server.

2.1.1 Required Interface Definition
OPC server developers must implement all functionality of required interfaces. An OPC client
communicates to an OPC server by calling functions from the OPC required interfaces.

2.1.2 Optional Interface Definition
OPC server developers may implement the functionality of the optional interfaces

An optional interface is one that the server developer may elect to implement. When an OPC Server
supports an optional interface, all functions within that optional interface must be implemented, even if
the function just returns E_NOTIMPL. An OPC client that wishes to use the functionality of an
optional interface will query the OPC server for the optional interface. The client must be designed to
not require that this optional interface exist.

2.1.3 Which interface should the client application use.
In general, client programs which are created using scripting languages will use the automation
interface. Client programs which are created in C++ will find it easiest to use the custom interface for
maximum performance.

2.2 UNICODE, NT and WIN95
All string parameters to the OPC Interfaces are UNICODE, because the native OLE APIs are all
UNICODE. Microsoft Visual Basic 4.0 and higher is UNICODE internally and, while it normally
converts strings to ANSI when calling a DLL, it will pass strings directly as UNICODE where a
corresponding TYPELIB indicates this should be done (as it will for OPC).

 2

OPC Common Definitions

At the time of this writing, MIDL 3.0 or later is required in order to correctly compile the IDL code
and generate proxy/stub software. Microsoft Windows NT 4.0 (or later), or Windows 95 with DCOM
support is required to properly handle the marshaling of OPC parameters.

Note that in order to implement OPC servers which will run on both Microsoft Windows NT and
Microsoft Windows 95 it is necessary for these servers to test the platform at runtime. In the case of
Microsoft Windows 95, conversion of any strings to be passed to Win32 from UNICODE to ANSI
needs to be done.

2.3 Threads and Multitasking
This specification does NOT require any particular threading model for the server.

The topic of multiple threads and their relationship to OLE is important. While these issues are also
difficult to summarize, the performance gains for a medium to large scale server are worth the
investment.

For OPC Servers

For servers, the default handling of threads by OLE is very simplistic. OLE will use one thread per
local or remote server to handle all requests for all clients. An alternate approach is referred to
‘Apartment Model Threading’ where all OLE calls into an OLE server are guaranteed to be serialized.
The apartment model simplifies the issues surrounding. multiple client access.

An advantage to this single threaded approach is that it simplifies implementation of servers with
respect to reentrancy issues. Since all method calls are serialized automatically by the message loop,
methods are never reentered or interrupted by other methods. Another advantage is that it insures (as
required by COM) that all access to an object is done by the thread that created the object.

The major disadvantage of this single threaded approach is that all method calls must run to
completion without significant delay. Any delay by a call prevents execution of the message loop and
dispatch of additional requests, thus blocking all clients of the server. This means that a data read or
write will need to be buffered so as not to seriously compromise speed. In particular, this means that
physical communications (unless they are very fast) should be handled by a separate thread within the
server (clearly logic related to data handling by this thread would need to be thread safe). This in turn
makes write verification and error handling for writes more difficult. These issues are reflected in the
design of the interfaces, particularly in the areas of ‘allowed behavior’. It will be noted later that the
design allows for optional Read and Write modes where the data is read or written directly to the
device.

For OPC Clients

It is currently a requirement of COM that an object be accessed only by the thread that created it. This
applies both to the actual objects in the server and to any ‘proxy’ objects represented by a marshaling
stub or handler. Note that there are ways to partially relax this constraint (e.g. through the use of
CoMarshallInterThreadInterfaceInStream()) however,this simply routes all method calls back through
the thread that created the object and this involves considerable overhead. In addition, no matter how
many threads attempt to access the objects in parallel, they will all be gated by the operation of the
dispatch loop in the thread owning the object which will tend to negate any performance improvement.

Note the general OLE rule that code within asynchronous OLE methods (e.g. OnDataChange) cannot
make synchronous or asynchronous OLE calls.

 3

OPC Common Definitions

3. OPC Common Interface Issues

3.1 Common Interface Issues
This section describes issues which are common to all interfaces, and some background information
about how the designers of OPC expected these interfaces to be implemented and used.

3.1.1 Custom vs. Automation Interface
OPC specifications always contain two sets of interfaces; Custom Interfaces and Automation
Interfaces. It has been found that it is not possible to define a single (dual-automation) interface which
is both highly efficient and provides the look-and-feel of typical automation servers, like Excel.

In general, client programs which are created using scripting languages, like Visual Basic (or VBA)
will use the automation interface. Client programs which are created in C++ will find it easiest to use
the custom interface for maximum performance.

OPC servers must implement the custom interface, and optionally may implement the automation
interface. The OPC Foundation provides a standard automation interface wrapper. This “wrapperDLL”
can be used for any vendor-specific custom-server.

3.1.2 Required vs Optional Interface Definition
OPC server developers must implement all functionality of required interfaces. An OPC client
communicates to an OPC server by calling functions from the OPC required interfaces.

OPC server developers may implement the functionality of the optional interfaces.

An optional interface is one that the server developer may elect to implement. When an OPC Server
supports an optional interface, all functions within that optional interface must be implemented, even if
the function just returns E_NOTIMPL. An OPC client that wishes to use the functionality of an
optional interface will query the OPC server for the optional interface. The client must be designed to
not require that this optional interface exist.

3.1.3 Ownership of memory
Per the COM specification, clients must free all memory associated with ‘out’ or ‘in/out’ parameters.
This includes memory that is pointed to by elements within any structures. This is very important for
client writers to understand, otherwise they will experience memory leaks that are difficult to find.
See the IDL files to determine which parameters are out parameters. The recommended approach is
for a client to create a subroutine that is used for freeing each type of structure properly.

Independent of success/failure, the server must always return well defined values for ‘out’ parameters.
Releasing the allocated resources is the client’s responsibility.

Note: If the error result is any FAILED error such as E_OUTOFMEMORY , the OPC server should
return NULL for all `out' pointers (this is standard COM behavior). This rule also applies to the error
arrays (ppErrors) returned by many of the functions below. In general, a robust OPC client should
check each out or in/out pointer for NULL prior to freeing it.

3.1.4 Null Strings and Null Pointers
Both of these terms are used. They are NOT the same thing. A NULL Pointer is an invalid pointer (0)
which will cause an exception if used. A NUL String is a valid (non zero) pointer to a 1 character
array where that character is a NUL (i.e. 0). If a NUL string is returned from a method as an [out]
parameter (or as an element of a structure) it must be freed, otherwise the memory containing the NUL
will be lost. Also note that a NULL pointer cannot be passed for an [in,string] argument due to COM

 4

OPC Common Definitions

marshalling restrictions. In this case a pointer to a NUL string should be passed to indicate an omitted
parameter.

3.1.5 Returned Arrays
You will note the syntax size_is(,dwCount) in the IDL of several interfaces used in combination with
pointers to pointers. This indicates that the returned item is a pointer to an actual array of the indicated
type, rather than a pointer to an array of pointers to items of the indicated type. This simplifies
marshaling , creation, and access of the data by the server and client.

3.1.6 Errors and return codes
The OPC specifications describe interfaces and corresponding behavior that an OPC server
implements, and an OPC client application depends on. A list of errors and return codes is contained
in each specification. For each method described a list of all possible OPC error codes as well as the
most common OLE error codes is included. It is likely that clients will encounter additional error
codes such as RPC and Security related codes in practice and they should be prepared to deal with
them.

In all cases ‘E’ error codes will indicate FAILED type errors and ‘S’ error codes will indicate at least
partial success.

 5

OPC Common Definitions

4. Shutdown of OPCServers

The shutdown capability allows an OPC Server to request that all clients disconnect from the server. It
is provided for all types of OPC Servers (DataAccess, Alarm&Event, ...).

The functionality is available via a Connection point on the Server object and a corresponding Client
side IOPCShutdown interface. Clients should make use of this feature to support graceful shutdown.

4.1 IConnectionPointContainer (on OPCServer)
This interface provides access to the connection point for IOPCShutdown.

The general principles of ConnectionPoints are not discussed here as they are covered very clearly in
the Microsoft Documentation. The reader is assumed to be familiar with this technology.

Likewise the details of the IEnumConnectionPoints, IConnectionPoint and IEnumConnections
interfaces are well defined by Microsoft and are not discussed here.

Note: OPC Compliant servers are not required to support more than one connection between each
Server and the Client. Given that servers are client specific entities it is expected that a single
connection will be sufficient for virtually all applications. For this reason (as per the COM
Specification) the EnumConnections method for IConnectionPoint interface for the IOPCShutdown is
allowed to return E_NOTIMPL.

4.1.1 IConnectionPointContainer::EnumConnectionPoints
HRESULT EnumConnectionPoints(
 IEnumConnectionPoints **ppEnum
);

Description

Create an enumerator for the Connection Points supported between the OPC Group and the Client.

Parameters Description

ppEnum Where to save the pointer to the connection point enumerator. See
the Microsoft documentation for a discussion of
IEnumConnectionPoints.

 6

OPC Common Definitions

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the OLE
programmers reference

Comments

OPCServers must return an enumerator that includes IOPCShutdown. Additional vendor specific
callbacks are also allowed.

4.1.2 IConnectionPointContainer:: FindConnectionPoint
HRESULT FindConnectionPoint(
 REFIID riid,
 IConnectionPoint **ppCP

);

Description

Find a particular connection point between the OPC Server and the Client.

Parameters Description

ppCP Where to store the Connection Point. See the Microsoft
documentation for a discussion of IConnectionPoint.

riid The IID of the Connection Point. (e.g.
IID_IOPCShutdown)

HRESULT Return Codes

Return Code Description
S_OK The function was successful.
For other codes see the
OLE programmers
reference

Comments

OPCServers must support IID_IOPCShutdown. Additional vendor specific callbacks are also allowed.

4.2 IOPCShutdown
In order to use this connection point, the client must create an object that supports both the IUnknown
and IOPCShutdown Interface. The client would pass a pointer to the IUnknown interface (NOT the
IOPCShutdown) to the Advise method of the proper IConnectionPoint in the server (as obtained from
IConnectionPointContainer:: FindConnectionPoint or EnumConnectionPoints). The Server will call
QueryInterface on the client object to obtain the IOPCShutdown interface. Note that the transaction
must be performed in this way in order for the interface marshalling to work properly for Local or
Remote servers.

 7

OPC Common Definitions

The ShutdownRequest method on this Interface will be called when the server needs to shutdown. The
client should release all connections and interfaces for this server.

A client which is connected to multiple OPCServers (for example Data access and/or other servers
such as Alarms and events servers from one or more vendors) should maintain separate shutdown
callbacks for each object since any server can shut down independently of the others.

4.2.1 IOPCShutdown::ShutdownRequest
HRESULT ShutdownRequest (
 [in] LPWSTR szReason
);

Description

This method is provided by the client so that the server can request that the client disconnect from the
server. The client should UnAdvise all connections, Remove all groups and release all interfaces.

Parameters Description

szReason An optional text string provided by the server
indicating the reason for the shutdown. The server may
pass a pointer to a NUL string if no reason is provided.

HRESULT Return Codes

Return Code Description
S_OK The client must always return S_OK.

Comments

The shutdown connection point is on a ‘per COM object’ basis. That is, it relates to the object created by
CoCreate… If a client connects to multiple COM objects then it should monitor each one separately for
shutdown requests.

 8

OPC Common Definitions

5. IOPCCommon
This interface is used by all OPC Server types (DataAccess, Alarm&Event, Historical Data). It
provides the ability to set and query a LocaleID which would be in effect for the particular
client/server session. That is, the actions of one client do not affect any other clients.

As with other interfaces such as IUnknown, the instance of this interface for each server is unique.
That is, an OPC Data Access server object and and OPC Alarms and Events server object might both
provide an implementation of IOPCCommon. A client which is maintaining connections to both
servers would, as with any other interface, use the interfaces on these two objects independently.

5.1.1 IOPCCommon::SetLocaleID
HRESULT SetLocaleID (
 [in] LCID dwLcid
);

Description

Set the default LocaleID for this server/client session. This localeid will be used by the GetErrorString
method on this interface. It should also be used as the ‘default’ localeid by any other server functions
that are affected by localid. Other OPC interfaces may provide additional LocaleID capability by
allowing this LocalID to be overridden either via a parameter to a method or via a property on a child
object.

Parameters Description

dwLcid The default LocaleID for this server/client session

Return Codes

Return Code Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For
example, the LocaleID specified is not valid.)

S_OK The operation succeeded.

Comments

The default value for the server should be LOCALE_SYSTEM_DEFAULT.

 9

OPC Common Definitions

5.1.2 IOPCCommon::GetLocaleID
HRESULT GetLocaleID (
 [out] LCID *pdwLcid
);

Description

Return the default LocaleID for this server/client session.

Parameters Description

pdwLcid Where to return the default LocaleID for this server/client
session

Return Codes

Return Code Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For
example, the passed pointer is not valid.)

S_OK The operation succeeded.

Comments

5.1.3 IOPCCommon::QueryAvailableLocaleIDs
HRESULT QueryAvailableLocaleIDs (
 [out] DWORD *pdwCount,
 [out, sizeis(dwCount)] LCID **pdwLcid
);

Description

Return the available LocaleIDs for this server/client session.

Parameters Description

pdwCount Where to return the LocaleID count

pdwLcid Where to return the LocaleID list.

 10

OPC Common Definitions

Return Codes

Return Code Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For
example, the passed pointer is not valid.)

S_OK The operation succeeded.

Comments

5.1.4 IOPCCommon::GetErrorString
HRESULT GetErrorString(
 [in] HRESULT dwError,
 [out, string] LPWSTR *ppString
);

Description

Returns the error string for a server specific error code.

Parameters Description

dwError A server specific error code that the client application had
returned from an interface function from the server, and for
which the client application is requesting the server’s textual
representation.

ppString Pointer to pointer where server supplied result will be saved

Return Codes

Return Code Description

E_FAIL The operation failed.

E_OUTOFMEMORY Not enough memory

E_INVALIDARG An argument to the function was invalid. (For
example, the error code specified is not valid.)

S_OK The operation succeeded.

Comments

The expected behavior is that this will include handling of Win32 errors as well (such as RPC errors).

Client must free the returned string.

It is recommended that the server put any OPC specific strings into an external resource to simplify
translation.

Note that if this method is being called via DCOM then it is very possible that RPC or other network
related errors will be returned. For this reason it is probably good practice for the client to attempt to
call a local Win32 function such as FormatMessage if this function fails.

 11

OPC Common Definitions

5.1.5 IOPCCommon::SetClientName
HRESULT SetClientName (
 [in, string] LPCWSTR szName
);

Description

Allows the client to optionally register a client name with the server. This is included primarily for
debugging purposes. The recommended behavior is that the client set his Node name and EXE name
here.

Parameters Description

szName An arbitrary string containing information about the client
task.

Return Codes

Return Code Description

E_FAIL The operation failed.

E_INVALIDARG An argument to the function was invalid. (For
example, the pointer specified is not valid.)

S_OK The operation succeeded.

Comments

 12

OPC Common Definitions

6. Installation and Registration Issues
This section describes all installation issues which are common to all OPC Servers (no matter which
interfaces they implement). Specific installation and registration issues will be described in the
interface-specific documents.
It is assumed that the server vendor will provide a SETUP.EXE to install the needed components for
their server. This will not be discussed further. Other than the actual components, the main issue
affecting OLE software is management of the Windows Registry and Component Catagories. The
issues here are (a) what entries need to be made and (b) how they can be made.

6.1 Component Categories
With the possibly huge amount of available components on a single computer system, their
management becomes increasingly difficult. OPC Clients often need to enumerate the OPC Servers
that they want to use in a certain context. In its first version, OPC specified a sub-key called OPC to
tag the OPC Server entries in the registry. Clients have to browse for this subkey. This method is
inefficient as it requires browsing all CLSID entries in the registry. Name collisions may occur. And
finally, access to remote registries will be restricted in NT5.0.

For all server specifications past DataAccess 1.0A, OPC uses Component Categories as a way to
categorize OPC Servers by their implemented functionality. Clients can use the new interface
IOPCServerList to obtain a list of servers with the required functionality. See the following chapter for
the specification of this interface

OPC defines “implemented categories” for each version of each OPC Interface specification. Each
category is identified by a globally unique identifier (GUID), the CATID. CATIDs are specified in the
registry section of each specification.
It is expected that a server will first create any category it uses and then will register for that category.
Unregistering a server should cause it to be removed from that category. See the ICatRegister
documentation for additional information.
A single server may belong to more than one category. I.e., it may support DataAccess Versions 1.0A
and 2.0 and in addition Alarm&Event Handling.

6.1.1 Component Categories Registration
During the registration process, each OPC Server must register itself with the Component Categories
Manager, a Microsoft supplied system COM object. OPC Clients will query the Components Category
Manager to enumerate the CLSIDs of all registered OPC Servers.

6.1.1.1 Server Registration
To Register with the Component Categories Manager, a server should first register the OPC defined
Category ID (CATID) and the OPC defined Category Description by calling ICatRegister::
RegisterCategories(), and then register its own CLSID as an implementation of the CATID with a call
to ICatRegister:: RegisterClassImplCategories().

To get an interface pointer to ICatRegister, call CoCreateInstance() as in this example from the Alarm
& Events Sample Server:

#include <comcat.h>

CoCreateInstance(CLSID_StdComponentCategoriesMgr, NULL, CLSCTX_INPROC_SERVER,
IID_ICatRegister, (void**)&pcr);

The OPC Alarm & Events Sample Server code uses helper functions defined in CATHELP.CPP to
make the actual calls to ICatRegister. Here is how the sample server registers and un-registers the
component categories:

 13

OPC Common Definitions

#include "cathelp.h"
#include "opc_ae.h"
#include "opcaedef.h"

void RegisterServer()
{
 // register component categories
 HRESULT hr;

 // IID_OPCEventServerCATID is the Category ID (a GUID) defined in opc_ae.idl.
 // OPC_EVENTSERVER_CAT_DESC is the category description defined in opcaedef.h
 // All servers should register the categogy this way

 hr = CreateComponentCategory(IID_OPCEventServerCATID, OPC_EVENTSERVER_CAT_DESC);

 // CLSID_OPCEventServer is the CLSID for this sample server. Each server
 // will need to register its own unique CLSID here with the component manager.

 hr = RegisterCLSIDInCategory(CLSID_OPCEventServer, IID_OPCEventServerCATID);
}

void UnregisterServer()
{
 UnRegisterCLSIDInCategory(CLSID_OPCEventServer, IID_OPCEventServerCATID);
}

6.1.1.2 Client Enumeration
Clients will use the Interface IOPCServerList to obtain a list of servers either locally or on a remote
host. This interface basically provides the functionality of the Component Categories Manager. It has
been defined by OPC, because access to the Component Categories Manager does not work for remote
machines.

See the following chapter for the specification of IOPCServerList.

6.2 Registry Entries for the Proxy/Stub DLL
The proxy/stub DLLs are used for marshalling interfaces to LOCAL or REMOTE servers. It is
generated directly from the IDL code and should be the same for every OPC Server. In general the
Proxy/Stub will use self registration. (Define REGISTER_PROXY_DLL during the build). Since this
is completely automatic and transparent it is not discussed further.
Also note that a prebuilt and tested proxy/stub DLL will be provided at the OPC Foundation Web site
making it unnecessary for vendors to rebuild this DLL.

Although vendors are allowed to add their own interfaces to OPC objects (as with any COM object)
they should NEVER modify the standard OPC IDL files or Proxy/Stub DLLs to include such
interfaces. Such interfaces should ALWAYS be defined in a separate vendor specific IDL file and
should be marshalled by a separate vendor specific Proxy/Stub DLL.

6.3 Creating the Registry Entries
COM defines a “self-registration” mechanism that enables you to encapsulate registry needs into a
DLL or EXE, providing clients and servers an easy way to make sure that any given module is fully
and accurately registered. In addition, COM also includes “unregistration” so that a server can remove
all of its registry entries when the DLL or EXE is removed from the file system, thereby keeping the
registry clean from useless entries.

When asked to self-register, a server must create all entries for every component that it supports,
including any entries for type libraries. When asked to “un-register” the server must remove those
entries that it created in its self-registration.

 14

OPC Common Definitions

For a DLL server, these requests are made through calls to the exported functions DllRegisterServer
and DllUnregisterServer, which must exist in the DLL under these exact names. Both functions take
no arguments and return an HRESULT to indicate the result. The two applicable error codes are
SELFREG_E_CLASS (failure to register/unregister CLSID information) and SELFREG_E_TYPELIB
(failure to register/unregister TypeLib information).1

If the server is packaged in an EXE module, then the application wishing to register the server
launches the EXE server with the command-line argument /RegServer or -RegServer (case-
insensitive). If the application wishes to unregister the server, it launches the EXE with the command-
line argument /UnregServer or -UnregServer. The self-registering EXE detects these command-line
arguments and invokes the same operations as a DLL would within DllRegisterServer and
DllUnregisterServer, respectively, registering its module path under LocalServer32 instead of
InprocServer32 or InprocHandler32.

The server must register the full path to the installation location of the DLL or EXE module for their
respective InprocServer32, InprocHandler32, and LocalServer32 keys in the registry. The module path
is easily obtained through the Win32 API function GetModuleFileName.

NOTE: The server should NOT register the proxy/stub interfaces. They should be registered by the
proxy/stub DLL as discussed earlier.

The registry entries for proxy interfaces can be easily generated when compiling the proxy dll. Simply
define the constant REGISTER_PROXY_DLL during compilation, and export DllRegisterServer and
DllUnregisterServer during the link. One can now populate the registry by executing regsvr32 and
passing the proxy dll name as an argument.

The following are the Microsoft COM required registry entries for a local server (EXE) shown in
Registry File (.reg) format:

REGEDIT

HKEY_CLASSES_ROOT\MyVendor.ServerName.1 = My OPC Server Description
HKEY_CLASSES_ROOT\MyVendor.ServerName.1\CLSID = { Your Server’s unique CLSID }

HKEY_CLASSES_ROOT\CLSID\{ Your Server’s unique CLSID } = My OPC Server Description
HKEY_CLASSES_ROOT\CLSID\{ Your Server’s unique CLSID }\ProgID = MyVendor.ServerName.1
HKEY_CLASSES_ROOT\CLSID\{ Your Server’s unique CLSID }\LocalServer32 = c:\FULLPATH\MyOPCserver.exe

The following are the Microsoft COM required registry entries for an Inproc server (DLL) shown in
Registry File (.reg) format:

REGEDIT

HKEY_CLASSES_ROOT\MyVendor.ServerName.1 = My OPC Server Description
HKEY_CLASSES_ROOT\MyVendor.ServerName.1\CLSID = { Your Server’s unique CLSID }

HKEY_CLASSES_ROOT\CLSID\{ Your Server’s unique CLSID } = My OPC Server Description
HKEY_CLASSES_ROOT\CLSID\{ Your Server’s unique CLSID }\ProgID = MyVendor.ServerName.1
HKEY_CLASSES_ROOT\CLSID\{ Your Handler’s unique CLSID }\InprocServer32 = c:\FULLPATH\MyOPCserver.dll

The following are the OPC required registry entries for all Data Access 1.0 servers shown in Registry
File (.reg) format. Only servers that support the Data Access 1.0 interface should make these entries:

REGEDIT

HKEY_CLASSES_ROOT\MyVendor.ServerName.1\OPC
HKEY_CLASSES_ROOT\MyVendor.ServerName.1\OPC\Vendor = My Vendor Name

1 SELFREG_E_CLASS and SELFREG_E_TYPELIB are defined in the OLE Control’s header
OLECTL.H.

 15

OPC Common Definitions

6.4 Version Convention
All OPC provided runtime files (DLLs and EXEs) will contain version information embedded in the
file’s resource. By convention, the version number will use the following format:

MM.mm.bb

Where:

MM == Major Version
mm == Minor Version
bb == Build Number

The version resource provides two version numbers, one for file and one for product. The same
version number will be used for both fields. In the resource, the version numbers are represented by
four comma delimited integers. To represent our three-part version number, the third integer will
always be zero. For example, if the version is 5.2.41 then the version resource (in the source .RC file)
will look like this:

VS_VERSION_INFO VERSIONINFO
 FILEVERSION 5,2,0,41
 PRODUCTVERSION 5,2,0,41
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
 FILEOS 0x40004L
 FILETYPE 0x2L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "CompanyName", "OPC Foundation \0"
 VALUE "FileDescription", "OPC Alarm and Event Server Proxy/Stub\0"
 VALUE "FileVersion", "5.2.41\0"
 VALUE "InternalName", "opc_aeps\0"
 VALUE "LegalCopyright", "Copyright © 1997 OPC Foundation\0"
 VALUE "OriginalFilename", "opc_aeps.dll\0"
 VALUE "ProductName", "OPC Alarm and Event Server Proxy/Stub\0"
 VALUE "ProductVersion", "5.2.41\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

The version information will be used to insure that during installation, an older version of a file will
not overwrite a newer version.

6.5 Installing OPC Binaries
All OPC vendors will need to install the appropriate OPC Foundation provided components
(proxy/stub DLLs, Automation wrappers etc.) to work with their components.

Since multiple vendors will be installing identical OPC Foundation components, it is imperative
that all vendors follow these installation instructions exactly without deviation:

All OPC Foundation binaries must be installed and registered in the Windows Systems directory.
This is the directory returned by the WIN32 function GetSystemDirectory. If a given file already exists
in this directory, the program should overwrite it with your application file only if your file is a more

 16

OPC Common Definitions

recent version. The GetFileTime, GetFileVersionInfo, and GetFileInformationByHandle functions can
be used to determine which file is more recent.

All OPC Foundation binaries must be installed/uninstalled with reference counting.
After copying a file, your installation program must make sure to increment the usage counter for that
file in the registry. When removing an application, it should decrement the use counter. If the result is
zero, the user should be given the option of unregistering and deleting the file. The user should be
warned that other applications may actually use this file and will not work if it is missing. The registry
key used for reference counting of all files is:

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs

The following example shows a reference count of 5 for OPCPROXY.DLL and a reference count of 3
for OPCENUM.EXE:

\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs
 C:\WINNT\System32\OPCPROXY.DLL=5
 C:\WINNT\System32\OPCENUM.EXE=3

Most installation utilities like InstallShield handle the installation of shared, version checked files
easily.

 17

OPC Common Definitions

7. OPC Server Browser

7.1 Overview
The OPC Foundation supplied Server Browser OPCENUM.EXE can reside on any machine, will
access the local Component Categories Manger and provides a new interface IOPCServerList which
can be marshaled and used by remote clients. This server has a published classid (see below) and can
be installed once on any machine which hosts OPC servers. The client still needs to know the
nodename of the target machine however he can now create this object remotely and use it's
IOPCServerList interface to determine what types and brands of servers are available on that machine.

7.2 Information for Users
The OPC Server Browser (OPCENUM.EXE) and the required proxy/stub (OPCCOMN_PS.DLL) can
be obtained from the OPC Foundation Web Site. The EXE and DLL should be copied to the main
WINDOWS directory (see the section “Installing OPC Binaries”, above).

The EXE is installed by running
 OPCENUM /RegServer
or
 OPCENUM /Service to install the server as a service on Windows NT.

The DLL is installed by running
 REGSVR32 OPCComn_ps.dll
No further user action is required. Doing the steps above will allow Client programs you have
purchased which support this server browser capability to function properly. Note that the OPC Server
Browser is designed to allow access by any user regardless of the DCOM security setup.

7.3 Information for Server Programmers
Note that the OPC Foundation provides the OPC Browser Object. OPC Servers should NOT
implement this interface. OPC Servers should simply register themselves with the appropriate
component category as described on the appropriate OPC Specification.

7.4 Information for Client Programmers
Client programmers should create the OPC Server Browser Object on the target machine by passing its
class id (CLSID_OPCServerList as defined in opc_cats.c) to CoCreateInstanceEx. They should obtain
the OPCServerList interface (IID_IOPCServerList as defined in opccomn_i.c). They can then use this
interface to obtain lists of the available servers for particular component categories. The OPC
Component categories for the various OPC Server types are defined in opc_cats.c. The marshalling
for this interface is included in the OPCComn_ps.dll.

 18

OPC Common Definitions

7.5 IOPCServerList Reference
The interface is designed to be as simple as possible to use. It is similar to the standard
ICatInformation but has been simplified and also modified so that it can work remotely. It provides
just the minimum functionality required for this particular application. It provides the methods which
are described in more detail later.

7.5.1 IOPCServerList::EnumClassesofCategory

HRESULT EnumClassesOfCategories(
 [in] ULONG cImplemented,
 [in,size_is(cImplemented)] CATID rgcatidImpl[],
 [in] ULONG cRequired,
 [in,size_is(cRequired)] CATID rgcatidReq[],
 [out] IEnumGUID** ppenumClsid);

Description

Returns a standard EnumCLSID containing the CLSIDs of the servers that implement any of the listed
categories on the target machine. This method is similar to the method of the same name provided in
ICatInformation except that the caller should use a value of 0 instead of –1 for the cImplemented and
cRequired arguments to include classes regardless of which classes they implement or require
(respectively).

Note that the easiest way to use this method is to pass in a single CATID (such as an OPC Data Access
2.0 Server) and to pass a 0 for Required IDs. This will give you an enumeration of the CLSIDs of the
servers that implement the specified category.

Parameters Description
cImplemented 0 (see description, above)

The number of category IDs in the rgcatidImpl array
rgcatidImpl An array of category identifiers.
cRequired 0 (see description, above)

The number of category IDs in the rgcatidReq array.
rgcatidReq An array of category identifiers.
ppenumClsid The location in which to return an IEnumGUID interface

that can be used to enumerate the CLSIDs of the classes that
implement category rcatid.

Return Codes

Return Code Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG Unable to create an instance of the Component
Categories Manager on the remote machine.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.

 19

OPC Common Definitions

7.5.2 IOPCServerList::GetClassDetails

HRESULT GetClassDetails(
 [in] REFCLSID clsid,
 [out] LPOLESTR* ppszProgID,
 [out] LPOLESTR* ppszUserType);

Description

Given a class ID, obtain the ProgID and the User Readable Name of the associated server.

Parameters Description

clsid One of the CLSIDs returned by EnumClassesOfCategory
(above).

ppszProgID [out] ProgID for the specified CLSID.

ppszUserType [out] User Readable Name for the specified CLSID.

Return Codes

Return Code Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG There is no CLSID registered for the class object.
REGDB_E_READREGDB There was an error reading the registry.

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.

 20

OPC Common Definitions

7.5.3 IOPCServerList::CLSIDFromProgID

HRESULT CLSIDFromProgID(
 [in] LPCOLESTR szProgId,
 [out] LPCLSID clsid);

Description

Given the ProgID which as a string, return the CLSID which is a GUID. This is useful when the client
(e.g. an Automation Wrapper DLL) already knows the PROGID of the target server on a remote
machine. ProgID is a string and thus easy to deal with however this needs to be translated to a CLSID
to be passed to CoCreateInstanceEx.

Parameters Description

szProgId ProgID string for which to read the CLSID.

clsid [out] CLSID which is registered for the given ProgID.

Return Codes

Return Code Description

E_FAIL The operation failed.

REGDB_E_CLASSNOTREG There is no CLSID registered for the class object.
REGDB_E_READREGDB There was an error reading the registry.

OLE_E_REGDB_KEY The ProgID = MainUserTypeName or CLSID =
MainUserTypeName keys are missing from the
registry.

E_INVALIDARG One or more arguments are incorrect.

E_OUTOFMEMORY Insufficient memory to create and return an
enumerator object.

S_OK The operation succeeded.

 21

OPC Common Definitions

8. Appendix A – OPC Common IDL Specification
The current files require MIDL compiler 3.00.15 or later and the WIN NT 4.0 release SDK.

Use the command line MIDL /ms_ext /c_ext /app_config opcda.idl.

The resulting OPCCOMN.H file should be included in all clients and servers.

The resulting OPCCOMN_I.C file defines the interface IDs and should be linked into all clients and
servers.

NOTE: This IDL file and the Proxy/Stub generated from it should NEVER be
modified in any way. If you add vendor specific interfaces to your server (which
is allowed) you must generate a SEPARATE vendor specific IDL file to describe
only those interfaces and a separate vendor specific ProxyStub DLL to marshall
only those interfaces.

// OPCCOMN.IDL
// REVISION: 04/06/98 08:00 PM (EST)
// VERSIONINFO 1.0.0.0
//
// 04/09/98 acc import unknwn.idl rather than oaidl.idl
// 06/15/98 acc add 'library' object at end to allow typelib generation
// 06/19/98 acc change V2 uuids prior to final release
// to avoid conflict with 'old' OPCDA Automation uuids
// 09/18/98 acc add OPCServerList IDL (with help from Gary Klassen)
//

import "unknwn.idl";
import "comcat.idl";

//**
// All servers except OPCDA1.0 have the ability to
// make callbacks into the client on shutdown via
// IOPCShutdown
//**
[
 object,
 uuid(F31DFDE1-07B6-11d2-B2D8-0060083BA1FB),
 pointer_default(unique)
]
interface IOPCShutdown : IUnknown
{
 HRESULT ShutdownRequest (
 [in, string] LPCWSTR szReason
);
}

//**
// All servers except OPCDA1.0 support IOPCCommon
//**
[
 object,
 uuid(F31DFDE2-07B6-11d2-B2D8-0060083BA1FB),
 pointer_default(unique)
]
interface IOPCCommon : IUnknown

 22

OPC Common Definitions

{

 HRESULT SetLocaleID (
 [in] LCID dwLcid
);

 HRESULT GetLocaleID (
 [out] LCID *pdwLcid
);

 HRESULT QueryAvailableLocaleIDs (
 [out] DWORD *pdwCount,
 [out, size_is(,*pdwCount)] LCID **pdwLcid
);

 HRESULT GetErrorString(
 [in] HRESULT dwError,
 [out, string] LPWSTR *ppString
);

 HRESULT SetClientName (
 [in, string] LPCWSTR szName
);

}

//**
// The OPCEnum.EXE object provided by the OPC Foundation
// supports the IOPCServerList interface via DCOM
// to allow clients to determine available OPC servers
// on remote machines
//**

[
 object,
 uuid(13486D50-4821-11D2-A494-3CB306C10000),
 pointer_default(unique)
]
interface IOPCServerList : IUnknown
{
 HRESULT EnumClassesOfCategories(
 [in] ULONG cImplemented,
 [in,size_is(cImplemented)] CATID rgcatidImpl[],
 [in] ULONG cRequired,
 [in,size_is(cRequired)] CATID rgcatidReq[],
 [out] IEnumGUID** ppenumClsid);

 HRESULT GetClassDetails(
 [in] REFCLSID clsid,
 [out] LPOLESTR* ppszProgID,
 [out] LPOLESTR* ppszUserType);

 HRESULT CLSIDFromProgID(
 [in] LPCOLESTR szProgId,
 [out] LPCLSID clsid);
};

 23

OPC Common Definitions

//**
// This TYPELIB is generated as a convenience to users of high level
tools
// which are capable of using or browsing TYPELIBs.
// 'Smart Pointers' in VC5 is one example.
//**
[
 uuid(B28EEDB1-AC6F-11d1-84D5-00608CB8A7E9),
 version(1.0),
 helpstring("OPCCOMN 1.0 Type Library")
]
library OPCCOMN
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 interface IOPCCommon;
 interface IOPCShutdown;
 interface IOpcServerList;
};

 24

OPC Common Definitions

9. Appendix B – Sample String Filter Function
This function provides essentially the same functionality as the LIKE operator in Visual Basic.

MatchPattern

Syntax

BOOL MatchPattern(LPCTSTR string, LPCTSTR pattern, BOOL bCaseSensitive)

Return Value

If string matches pattern, return is TRUE; if there is no match, return is FALSE. If either string or pattern
is Null, return is FALSE;

Parameters

string String to be compared with pattern.

pattern Any string conforming to the pattern-matching conventions described in Remarks.

bCaseSensitive TRUE if comparison should be case sensitive.

Remarks

A versatile tool used to compare two strings. The pattern-matching features allow you to use wildcard
characters, character lists, or character ranges, in any combination, to match strings. The following table
shows the characters allowed in pattern and what they match:

Characters in pattern Matches in string

? Any single character.

* Zero or more characters.

Any single digit (0-9).

[charlist] Any single character in charlist.

[!charlist] Any single character not in charlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used to match any single
character in string and can include almost any charcter code, including digits.

Note To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*),
enclose them in brackets. The right bracket (]) can't be used within a group to match itself, but it can be
used outside a group as an individual character.

By using a hyphen (-) to separate the upper and lower bounds of the range, charlist can specify a range of
characters. For example, [A-Z] results in a match if the corresponding character position in string
contains any uppercase letters in the range A-Z. Multiple ranges are included within the brackets without
delimiters.

Other important rules for pattern matching include the following:

 25

OPC Common Definitions

 26

• An exclamation point (!) at the beginning of charlist means that a match is made if any character
except the characters in charlist is found in string. When used outside brackets, the exclamation
point matches itself.

• A hyphen (-) can appear either at the beginning (after an exclamation point if one is used) or at the
end of charlist to match itself. In any other location, the hyphen is used to identify a range of
characters.

• When a range of characters is specified, they must appear in ascending sort order (from lowest to
highest). [A-Z] is a valid pattern, but [Z-A] is not.

• The character sequence [] is considered a zero-length string ("").

Here is the code:

inline int ConvertCase(int c, BOOL bCaseSensitive)
{
 return bCaseSensitive ? c : toupper(c);
}

//***
// return TRUE if String Matches Pattern --
// -- uses Visual Basic LIKE operator syntax
// CAUTION: Function is recursive
//***
BOOL MatchPattern(LPCTSTR String, LPCTSTR Pattern, BOOL bCaseSensitive)
{
 TCHAR c, p, l;
 for (; ;)
 {
 switch (p = ConvertCase(*Pattern++, bCaseSensitive))
 {
 case 0: // end of pattern
 return *String ? FALSE : TRUE; // if end of string TRUE

 case _T('*'):
 while (*String)
 { // match zero or more char
 if (MatchPattern (String++, Pattern, bCaseSensitive))
 return TRUE;
 }
 return MatchPattern (String, Pattern, bCaseSensitive);

 case _T('?'):
 if (*String++ == 0) // match any one char
 return FALSE; // not end of string
 break;

 case _T('['):
 // match char set
 if ((c = ConvertCase(*String++, bCaseSensitive)) == 0)
 return FALSE; // syntax
 l = 0;
 if(*Pattern == _T('!')) // match a char if NOT in set []
 {
 ++Pattern;

 while((p = ConvertCase(*Pattern++, bCaseSensitive))
 != _T('\0'))

OPC Common Definitions

 27

 {
 if (p == _T(']')) // if end of char set, then
 break; // no match found

 if (p == _T('-'))
 { // check a range of chars?
 p = ConvertCase(*Pattern, bCaseSensitive);
 // get high limit of range
 if (p == 0 || p == _T(']'))
 return FALSE; // syntax

 if (c >= l && c <= p)
 return FALSE; // if in range, return FALSE
 }
 l = p;
 if (c == p) // if char matches this element
 return FALSE; // return false
 }
 }
 else // match if char is in set []
 {
 while((p = ConvertCase(*Pattern++, bCaseSensitive))
 != _T('\0'))
 {
 if (p == _T(']')) // if end of char set, then
 return FALSE; // no match found

 if (p == _T('-'))
 { // check a range of chars?
 p = ConvertCase(*Pattern, bCaseSensitive);
 // get high limit of range
 if (p == 0 || p == _T(']'))
 return FALSE; // syntax

 if (c >= l && c <= p)
 break; // if in range, move on
 }
 l = p;
 if (c == p) // if char matches this element
 break; // move on
 }

 while (p && p != _T(']')) // got a match in char set
 p = *Pattern++; // skip to end of set
 }

 break;

 case _T('#'):
 c = *String++;
 if(!_istdigit(c))
 return FALSE; // not a digit

 break;

 default:
 c = ConvertCase(*String++, bCaseSensitive);
 if(c != p) // check for exact char
 return FALSE; // not a match

 break;
 }
 }
}

	Introduction
	Readers Guide

	OPC Design Fundamentals
	Interface Definitions
	Required Interface Definition
	Optional Interface Definition
	Which interface should the client application use.

	UNICODE, NT and WIN95
	Threads and Multitasking

	OPC Common Interface Issues
	Common Interface Issues
	Custom vs. Automation Interface
	Required vs Optional Interface Definition
	Ownership of memory
	Null Strings and Null Pointers
	Returned Arrays
	Errors and return codes

	Shutdown of OPCServers
	IConnectionPointContainer (on OPCServer)
	IConnectionPointContainer::EnumConnectionPoints
	IConnectionPointContainer:: FindConnectionPoint

	IOPCShutdown
	IOPCShutdown::ShutdownRequest

	IOPCCommon
	
	IOPCCommon::SetLocaleID
	IOPCCommon::GetLocaleID
	IOPCCommon::QueryAvailableLocaleIDs
	IOPCCommon::GetErrorString
	IOPCCommon::SetClientName

	Installation and Registration Issues
	Component Categories
	Component Categories Registration
	Server Registration
	Client Enumeration

	Registry Entries for the Proxy/Stub DLL
	Creating the Registry Entries
	Version Convention
	Installing OPC Binaries

	OPC Server Browser
	Overview
	Information for Users
	Information for Server Programmers
	Information for Client Programmers
	IOPCServerList Reference
	IOPCServerList::EnumClassesofCategory
	IOPCServerList::GetClassDetails
	IOPCServerList::CLSIDFromProgID

	Appendix A – OPC Common IDL Specification
	Appendix B – Sample String Filter Function

